Perovskite solar cells for building integrated photovoltaics⁠—glazing applications

نویسندگان

چکیده

•Transparency and color control of perovskite solar cells for window applications•Band-gap engineering rather than “thinning” alone improves performance•Promising vertical facades due to better performance under low-intensity diffuse sunlight•Review field testing cost analysis showing research development opportunities The market building-integrated photovoltaics (BIPVs) has great potential. This been projected be worth around €11 billion in 2021, accounting 13% the total PV market. current BIPV is dominated by crystalline silicon devices (56%) that are opaque, limiting their application glazing. Hence, there a motivation develop thin-film semiconductor materials new cell designs such application. Metal halide promising candidate aesthetically appealing, electrically optically efficient BIPVs. In addition, number startups have commenced pilot installations building applied blinds. paper provides comprehensive review demonstrated with enabling attributes suitable glazing applications. also reports advantage band-gap semi-transparent as well colored devices. realization allows higher power conversion efficiencies achieved (6%–14%) high (e.g., 90%–100%) visible transparency. opens up wide-band-gap demonstrations. points out advantages perovskites mounting light irradiance. Thermal, toxicity, considerations discussed. It clear more work on moduling, packaging, compliance needed meet multiple requirements, aesthetics, weight, mechanical strength, weather fire proofing. Perovskite attracted tremendous activity recent years excellent optoelectronic material properties ease fabrication. They uniquely attractive potential add value terms aesthetics. Here, we demonstrations applications, focusing unique associated transparency control, both statically dynamically. Our calculations show relationship between efficiency not strictly linear. Respectable theoretically possible. produce light, making them facades. Reported summarized. Under each section, widespread implementation perovskite-based windows presented. There an increasing trend employ renewable energy technologies cities reduce carbon footprint. More 100 globally now equipped fully electricity production remote farms wind farms.1CDP World's Renewable Energy Cities.https://www.cdp.net/en/cities/world-renewable-energy-citiesDate: 2021Google Scholar sector, photovoltaic (PV) systems can directly installed rooftops localized generation, reducing distribution costs. Although rooftop highest adoption rate built environment so far,2Mordor Intelligence. Building integrated (BIPV) market—growth, trends, forecast (2020–2025). https://www.mordorintelligence.com/industry-reports/building-integrated-photovoltaic-market.Google facades, including windows, introduce additional sun-harvesting areas, forming system. larger cities, where area small fraction envelope 1/3.2 three-story building3Martinez A. Choi J.-H. Exploring use facade information estimate performance.Sustain. Cities Soc. 2017; 35: 511-521Crossref Scopus (8) Google Scholar), major resource falling which currently utilized generation. For tall buildings, large facade-to-roof ratio compensates lower irradiation intensity surface compared horizontal surface, resulting similar or even annualized production. reported expected grow at annual growth 40% within next decade.4International AgencyColoured market, development.2019https://www.diva-portal.org/smash/get/diva2:1305998/FULLTEXT01.pdfGoogle billion, 16 GW 2021 market.5R2M, Onyx Solar, Flisom, BEARD-iD, AccionaBIPV stakeholder needs.2019https://www.pvsites.eu/downloads/download/report-bipv-market-and-stakeholder-analysis-and-neGoogle Among all possible structural surfaces useful BIPV, glass installation rate.2Mordor Of technologies, (c-Si)-based account largest share—56% facades—while systems, amorphous (a-Si),6Lee H.-M. Kim S. Lee C. Yoon J. Power loss factor a-Si system based measured data test facility.Appl. Sci. 2018; 8: 1645Crossref (5) dye-sensitized cells,7Yoon Tak Jun Y. Kang K. Park Application transparent systems.Build. Environ. 2011; 46: 1899-1904Crossref (193) organic cells,8Lee B. Lahann L. Li Forrest S.R. Cost estimates scale semitransparent modules photovoltaics.Sustainable Fuels. 2020; 4: 5765-5772Crossref 44%. depends only generation but its appearance scenic viewing lighting control. latter, particular, provided opposed Si-wafer-based technology. novel Aesthetically will bring benefits sustainability cities. last decade witnessed rapid climb electrical over 25%.9Almora O. Baran D. Bazan G.C. Christian Cabrera C.I. Catchpole K.R. Erten-Ela Guo F. Hauch et al.Device emerging materials.Adv. Mater. 2021; 112102526Google photo-absorbers carrier mobility. fabricated using scalable solution processes low temperatures, manufacturing costs10Chang N.L. Yi Ho-Baillie A.W. Basore P.A. Young T.L. Evans R. Egan R.J. A estimation method uncertainty modules.Prog. Photovolt: Res. Appl. 25: 390-405Crossref (120) Scholar,11Chang A.W.Y. Vak Gao M. Green M.A. Manufacturing roll-to-roll processes.Sol. Sol. Cells. 174: 314-324Crossref (81) BIPV.12Zhu Shu Fan Z. Recent progress photovoltaics.Chem. Chin. Universities. 36: 366-376Crossref (9) Scholar, 13Koh T.M. Wang H. Ng Y.F. Bruno Mhaisalkar Mathews N. Halide photovoltaics: transforming façades Into generators.Adv. (Published online October 26, 2021)https://doi.org/10.1002/adma.202104661Crossref (1) 14Roy Ghosh Bhandari Sundaram Mallick T.K. application: review.Buildings. 10: 129Crossref (26) 15Batmunkh Zhong Y.L. Zhao advances photovoltaics.Adv. 32: e2000631Crossref PubMed (32) (Figure 1): semi-transparency,16Rai Yuan Sadhu Leow S.W. Etgar Magdassi Wong L.H. Multimodal approach towards module.Adv. 112102276Crossref (0) Scholar,17Rahmany Semitransparent cells.ACS Lett. 5: 1519-1531Crossref (49) tuning18Anaya Lozano G. Calvo M.E. Míguez ABX3 tandem cells.Joule. 1: 769-793Abstract Full Text PDF (118) allowing variety spectral response control,19Xue Q. Xia Brabec C.J. Yip polymer generating applications.Energy 11: 1688-1709Crossref other types cells. good weak sunlight,20Du T. Xu W. Ratnasingham Lin Briscoe McLachlan Durrant J.R. Light-intensity thickness dependent planar cells: charge recombination versus extraction.J. Chem. 12648-12655Crossref Scholar,21Perovskites take steps industrialization.Nat. Energy. 1Crossref (10) cloudy day operation. However, require encapsulation against moisture UV degradation durability. Glass practical choice encapsulation, itself element motivating pleasing windows.12Zhu Scholar,15Batmunkh Scholar,19Xue Scholar,22Zhang Zhang Cheng Silva S.R.P. Critical flexible cells.Mater. Today. 39: 66-88Crossref (60) Scholar,23Joseph Pogrebnaya Kichonge photovoltaic: performance, challenges, future potential.Int. Photoenergy. 2019; 2019: 1-17Crossref (16) covers most developments paying special attention limits “visible” “invisible” reviews characteristics application, low-intensity-light response, taking phase transition switchable Field summarized this review. Research presented section. consists photo-absorber layer, electron transport layer (ETL), hole (HTL), top bottom electrodes, substrate. photo absorber generally made hybrid metal perovskite, highly versatile (Table 1) composition, determining bandgap, and, therefore, response. weight substrate, layers nanoscale negligible weight. Past calculations24Kaltenbrunner Adam Głowacki E.D. Drack Schwödiauer Leonat Apaydin D.H. Groiss Scharber M.C. White M.S. al.Flexible power-per-weight chromium oxide–metal contacts improved stability air.Nat. 2015; 14: 1032-1039Crossref (624) Scholar,25Kang Jeong Cho Y.J. Lim J.Y. Ko Ultrathin, lightweight performance.J. 7: 1107-1114Crossref report power-to-weight ratios range 23–29 W/g 12%–15% These numbers already superior conventional wafer-based technologies. Currently, certified 25.5% 0.1 cm2,9Almora Scholar,26NRELBest Research-Cell Efficiency Chart.https://www.nrel.gov/pv/cell-efficiency.htmlDate: 2020Google 22.6% 1 cm2,27Peng Walter Ren Tebyetekerwa Wu Duong Lu Mahmud al.Nanoscale fill factors polymer-passivated cells.Science. 371: 390-395Crossref (112) Scholar,28Green Dunlop Hohl-Ebinger Yoshita Kopidakis Hao X. Solar tables (Version 58).Prog. Photovolt. 29: 657-667Crossref (162) 17.9% 804 cm2,28Green further ratios. glazing, negligible. Additional come from wiring.Table 1Popular compositions cellsPerovskitesBandgap Eg (eV)CH3NH3PbI3 (MAPbI3)1.55CH3NH3PbBr3 (MAPbBr3)2.30CsPbI31.72CsPbI2Br1.90CsPbIBr22.10HC(NH2)2PbI3 (FAPbI3)1.47CH3NH3SnI31.20–1.40HC(NH2)SnI31.41Cs0.05FA0.8MA0.15PbI2.55Br0.451.57Bandgap minimum amount (from photons case cells) required break free bound state, conductive. Open table tab Bandgap As temperatures non-solution processes, versatility absorbers, blading,29Tang Deng Zheng Bai Fang Dong Wei Huang Composition doctor-blading cells.Adv. 71700302Crossref (186) spraying,30Lau C.F.J. Ma Yun J.S. PbIBr2 spray-assisted deposition.ACS 2016; 573-577Crossref drop-on-demand printing,31Wu Jiang Yang Hou Ye Han C.S. Chi al.All electrospray printing Carbon-based cost-effective Funct. 312006803Google slot-die coating,32Subbiah A.S. Isikgor F.H. Howells C.T. De Bastiani Liu Aydin E. Furlan Allen T.G. Zhumagali al.High-performance single-junction textured perovskite/silicon via slot-die-coating.ACS 3034-3040Crossref (58) vacuum sublimation,33Malinkiewicz Yella Y.H. Espallargas G.M. Graetzel Nazeeruddin M.K. Bolink H.J. employing charge-transport layers.Nat. Photonics. 2014; 128-132Crossref (1204) vapor evaporation,34Chen Ju M.G. Garces H.F. Carl A.D. Ono L.K. Hawash Shen Qi Grimm R.L. al.Highly stable all-inorganic lead-free native-oxide passivation.Nat. Commun. 16Crossref (307) Scholar,35Liu Johnston M.B. Snaith Efficient heterojunction deposition.Nature. 2013; 501: 395-398Crossref chemical deposition.36Tavakoli M.M. Gu Reckmeier He Rogach A.L. Yao Fabrication one-step deposition method.Sci. Rep. 514083Crossref (165) When selective (such TiO2) processing care must taken ensure they do exceed softening point temperature.37Seward III, T.P. Vascott High Temperature Melt Property Database Process Modeling. Wiley-American Ceramic Society, 2005Google pose any challenge, given architectures polarities available high-performance processed (100°C–200°C). purpose retrofitting, substrates, willow glass21Perovskites polymers,22Zhang then onto fabric. requires absorber, layers, electrodes. Figure 2 illustrates strategies achieving while Tables 3 list examples respectively.Table 2Examples cellsLayerHole layerThicknessAverage transmittance TCO substratesRef.TiO2Electron60 nm78% (380–700 nm)Ke al.41Ke Xiong Qin P. Tao Lei Wan al.Low-temperature solution-processed tin oxide alternative transporting cells.J. Am. 137: 6730-6733Crossref (850) ScholarSnO2Electron60 nm81% ScholarPCBMElectron50 nm72% (400–800 nm)Chang al.42Chang S.H. Chen Tien Unraveling multifunctional capabilities PCBM thin films inverted-type CH3NH3PbI3 photovoltaics.Sol. 169: 40-46Crossref al.43Chen L.-C. Tseng Chang Fullerene-based MAPbBr3 cells.Coatings. 6: 53Crossref ScholarSpiro-OMeTADHole∼150 nm84% nm)Escarré al.44Escarré Sansonnens Galliano Cattaneo Heinstein Nicolay Bailat Eberhard Ballif Perret-Aebi L.-E. becoming real elements: white module, revolution BIPV.in: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). Publications, 2015Crossref (24) ScholarPTAAHole50 nm83% nm)Liu al.45Liu Ouyang Gong 20.7% Highly reproducible inverted enhanced eliminated hysteresis.Energy 12: 1622-1633Crossref ScholarNiOxHole15 nm)Zheng al.46Zheng Hu Lau Bing Fu al.Solution-processed, silver-doped NiOx high-efficiency 561-570Crossref (77) ScholarCuSCNHole<100 nm82% (420–770 nm)Khorasani al.47Khorasani Marandi Iraji zad Taghavinia co-solvent assisted CuSCN coverage improvement corresponding mixed halides Sci.: Electron. 30: 11576-11587Crossref (6) ScholarSpiro-OMeTAD, 2,2′,7,7′-tetrakis-9,9'-spirobifluorene; PCBM, [6,6]-phenyl C61 butyric acid methyl ester; PTAA, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine. Table 3Examples electrodes cellsElectrodeRear/front electrode∗ThicknessAverage transmittanceRef.Fluorine doped glassfront700 nm80% (350–750 al.48Ke Cimaroli A.J. Grice C.R. Yan Effects annealing temperature 3: 24163-24168Crossref ScholarIndium glassfront200 nm85% nm)Weber al.49Weber Rath Mangalam Kunert Coclite A.M. Bauch Dimopoulos Trimmel Investigation NiOx-hole triple cation 1847-1855Crossref ScholarMoOx/ITOrear30/120 nm)Fan al.50Fan Zhou Meng al.Toward full perovskite/Si monolithic device With PCE exceeding 20.Sol. RRL. 11700149Crossref (52) ScholarMoOx/Au/MoOxrear10/10/35 (370–740 nm)Della Gaspera al.51Della Peng Spiccia Bach U. Jasieniak J.J. Ultra-thin cells.Nano 13: 249-257Crossref (259) ScholarAg/ITOrear1/250 nm)Guchhait al.52Guchhait Dewi H.A. Suhaimi F.B. Over 20% CIGS–perovskite 2: 807-812Crossref ScholarAu/LiFrear6/100 nm61% nm)Roldán-Carmona al.53Roldán-Carmona Malinkiewicz Betancur Longo Momblona Jaramillo Camacho cells.Energy 2968-2973Crossref ScholarCarbon nanotuberear50 nm71% nm)Li al.54Li Kulkarni S.A. Boix P.P. Shi Cao Batabyal S.K. al.Laminated nanotube networks electrode-free Nano. 6797-6804Crossref (378) ScholarPDMS/PMMA/graphenerear0.2 mm PDMS92% nm)You al.55You Tai Cells Graphene Electrodes.Adv. 27: 3632-3638Crossref (389) ScholarAg nanowiresrear120 nm75% (450–750 nm)Guo al.56Guo Azimi Przybilla Bronnbauer Langner Spiecker Forberich High-performance silver nanowires electrodes.Nanoscale. 1642-1649Crossref ScholarC60/Ag/C60rear45/14/45 nm53% nm)Choi al.57Choi Seok H.K. Thermally-evaporated C60/Ag/C60 multilayer film heaters.Sci. Technol. Adv. 21: 435-449Crossref ScholarNi mesh conductive adhesive laminaterear29 μm TCA/4 Ni86% nm)Bryant al.58Bryant Greenwood Troughton Wijdekop Carnie Davies Wojciechowski Watson Worsley laminate electrode organic-inorganic lead 26: 7499-7504Crossref (151) ScholarIn2O3:Hfront360 nm)Fu al.59Fu Feurer Weiss Pisoni Avancini Andres Buecheler Tiwari High-efficiency substrate configuration.Nat. 216190Crossref (198) ScholarGraphene polyester sulfonefront1 layer80% (380–780 nm)Tran al.60Tran V.-D. Pammi S.V.N. Jeon Transfer-free graphene super-flexible ambient air.Nano 65104018Crossref (34) quartz glassfront4 layers90% (550 nm)Bae al.61Bae Balakrishnan H.R. Song Y.I. al.Roll-to-roll 30-inch electrodes.Nat. Nanotechnol. 2010; 574-578Crossref (6701) Scholarfront3 layers92% Scholarfront2 layers95% Scholarfront1 layer97% ScholarTransparent grid fingersrear70 nm ITO/7 triangular fingersstimulated 75% nm)Saive al.62Saive Boccard Saenz Yalamanchili Bukowsky Jahelka Yu Z.J. Holman Atwater Silicon effectively front contacts.Sustainable 593-598Crossref Scholar,63Saive Borsuk Emmer H.S. Lloyd J.V. Effectively devices.Adv. Opt. 1470-1474Crossref (45) ScholarInZnSnOFront200 (600 nm)Kim al.64Kim J.-G. Na H.H. Semi-transparent sputtered inZnSnO cathodes photovoltaics.Org. 78105560Crossref ScholarITO, indium oxide; PDMS, polydimethylsiloxane; PMMA, Poly(methyl methacrylate)

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tantalate-based Perovskite for Solar Energy Applications

To realize a sustainable society in the near future, the development of clean, renewable, cheap and sustainable resources and the remediation of environmental pollutions using solar energy as the driving force would be important. During the past few decades, plen‐ ty of efforts have been focused on this area to develop solar light active materials to meet the increased energy and environmental ...

متن کامل

Perovskite Solar Cells

Two-dimensional hybrid perovskites are used as absorbers in solar cells. Our first-generation devices containing (PEA)2(MA)2[Pb3I10] (1; PEA=C6H5(CH2)2NH3 , MA= CH3NH3 ) show an open-circuit voltage of 1.18 V and a power conversion efficiency of 4.73%. The layered structure allows for high-quality films to be deposited through spin coating and high-temperature annealing is not required for devi...

متن کامل

Organic Charge Carriers for Perovskite Solar Cells.

The photovoltaic field is currently experiencing the "perovskite revolution". These materials have been known for decades, but only recently have they been applied in solid-state solar cells to obtain outstanding power conversion efficiencies. Given that the variety of perovskites used so far is limited, a lot of attention has been devoted to the development of suitable organic charge-transport...

متن کامل

Hole-Transport Materials for Perovskite Solar Cells.

The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this lev...

متن کامل

Methodologies for high efficiency perovskite solar cells

Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Joule

سال: 2022

ISSN: ['2542-4351', '2542-4785']

DOI: https://doi.org/10.1016/j.joule.2022.06.003